Despite some successful applications of goal-driven navigation, existing deep reinforcement learning-based approaches notoriously suffers from poor data efficiency issue. One of the reasons is that the goal information is decoupled from the perception module and directly introduced as a condition of decision-making, resulting in the goal-irrelevant features of the scene representation playing an adversary role during the learning process. In light of this, we present a novel Goal-guided Transformer-enabled reinforcement learning (GTRL) approach by considering the physical goal states as an input of the scene encoder for guiding the scene representation to couple with the goal information and realizing efficient autonomous navigation. More specifically, we propose a novel variant of the Vision Transformer as the backbone of the perception system, namely Goal-guided Transformer (GoT), and pre-train it with expert priors to boost the data efficiency. Subsequently, a reinforcement learning algorithm is instantiated for the decision-making system, taking the goal-oriented scene representation from the GoT as the input and generating decision commands. As a result, our approach motivates the scene representation to concentrate mainly on goal-relevant features, which substantially enhances the data efficiency of the DRL learning process, leading to superior navigation performance. Both simulation and real-world experimental results manifest the superiority of our approach in terms of data efficiency, performance, robustness, and sim-to-real generalization, compared with other state-of-art baselines. Demonstration videos are available at \colorb{https://youtu.be/93LGlGvaN0c.
translated by 谷歌翻译
Deep neural networks (DNNs) are found to be vulnerable to adversarial attacks, and various methods have been proposed for the defense. Among these methods, adversarial training has been drawing increasing attention because of its simplicity and effectiveness. However, the performance of the adversarial training is greatly limited by the architectures of target DNNs, which often makes the resulting DNNs with poor accuracy and unsatisfactory robustness. To address this problem, we propose DSARA to automatically search for the neural architectures that are accurate and robust after adversarial training. In particular, we design a novel cell-based search space specially for adversarial training, which improves the accuracy and the robustness upper bound of the searched architectures by carefully designing the placement of the cells and the proportional relationship of the filter numbers. Then we propose a two-stage search strategy to search for both accurate and robust neural architectures. At the first stage, the architecture parameters are optimized to minimize the adversarial loss, which makes full use of the effectiveness of the adversarial training in enhancing the robustness. At the second stage, the architecture parameters are optimized to minimize both the natural loss and the adversarial loss utilizing the proposed multi-objective adversarial training method, so that the searched neural architectures are both accurate and robust. We evaluate the proposed algorithm under natural data and various adversarial attacks, which reveals the superiority of the proposed method in terms of both accurate and robust architectures. We also conclude that accurate and robust neural architectures tend to deploy very different structures near the input and the output, which has great practical significance on both hand-crafting and automatically designing of accurate and robust neural architectures.
translated by 谷歌翻译
Making safe and human-like decisions is an essential capability of autonomous driving systems and learning-based behavior planning is a promising pathway toward this objective. Distinguished from existing learning-based methods that directly output decisions, this work introduces a predictive behavior planning framework that learns to predict and evaluate from human driving data. Concretely, a behavior generation module first produces a diverse set of candidate behaviors in the form of trajectory proposals. Then the proposed conditional motion prediction network is employed to forecast other agents' future trajectories conditioned on each trajectory proposal. Given the candidate plans and associated prediction results, we learn a scoring module to evaluate the plans using maximum entropy inverse reinforcement learning (IRL). We conduct comprehensive experiments to validate the proposed framework on a large-scale real-world urban driving dataset. The results reveal that the conditional prediction model is able to forecast multiple possible future trajectories given a candidate behavior and the prediction results are reactive to different plans. Moreover, the IRL-based scoring module can properly evaluate the trajectory proposals and select close-to-human ones. The proposed framework outperforms other baseline methods in terms of similarity to human driving trajectories. Moreover, we find that the conditional prediction model can improve both prediction and planning performance compared to the non-conditional model, and learning the scoring module is critical to correctly evaluating the candidate plans to align with human drivers.
translated by 谷歌翻译
The number of international benchmarking competitions is steadily increasing in various fields of machine learning (ML) research and practice. So far, however, little is known about the common practice as well as bottlenecks faced by the community in tackling the research questions posed. To shed light on the status quo of algorithm development in the specific field of biomedical imaging analysis, we designed an international survey that was issued to all participants of challenges conducted in conjunction with the IEEE ISBI 2021 and MICCAI 2021 conferences (80 competitions in total). The survey covered participants' expertise and working environments, their chosen strategies, as well as algorithm characteristics. A median of 72% challenge participants took part in the survey. According to our results, knowledge exchange was the primary incentive (70%) for participation, while the reception of prize money played only a minor role (16%). While a median of 80 working hours was spent on method development, a large portion of participants stated that they did not have enough time for method development (32%). 25% perceived the infrastructure to be a bottleneck. Overall, 94% of all solutions were deep learning-based. Of these, 84% were based on standard architectures. 43% of the respondents reported that the data samples (e.g., images) were too large to be processed at once. This was most commonly addressed by patch-based training (69%), downsampling (37%), and solving 3D analysis tasks as a series of 2D tasks. K-fold cross-validation on the training set was performed by only 37% of the participants and only 50% of the participants performed ensembling based on multiple identical models (61%) or heterogeneous models (39%). 48% of the respondents applied postprocessing steps.
translated by 谷歌翻译
Multispectral photometric stereo(MPS) aims at recovering the surface normal of a scene from a single-shot multispectral image captured under multispectral illuminations. Existing MPS methods adopt the Lambertian reflectance model to make the problem tractable, but it greatly limits their application to real-world surfaces. In this paper, we propose a deep neural network named NeuralMPS to solve the MPS problem under general non-Lambertian spectral reflectances. Specifically, we present a spectral reflectance decomposition(SRD) model to disentangle the spectral reflectance into geometric components and spectral components. With this decomposition, we show that the MPS problem for surfaces with a uniform material is equivalent to the conventional photometric stereo(CPS) with unknown light intensities. In this way, NeuralMPS reduces the difficulty of the non-Lambertian MPS problem by leveraging the well-studied non-Lambertian CPS methods. Experiments on both synthetic and real-world scenes demonstrate the effectiveness of our method.
translated by 谷歌翻译
kNN-MT presents a new paradigm for domain adaptation by building an external datastore, which usually saves all target language token occurrences in the parallel corpus. As a result, the constructed datastore is usually large and possibly redundant. In this paper, we investigate the interpretability issue of this approach: what knowledge does the NMT model need? We propose the notion of local correctness (LAC) as a new angle, which describes the potential translation correctness for a single entry and for a given neighborhood. Empirical study shows that our investigation successfully finds the conditions where the NMT model could easily fail and need related knowledge. Experiments on six diverse target domains and two language-pairs show that pruning according to local correctness brings a light and more explainable memory for kNN-MT domain adaptation.
translated by 谷歌翻译
关于点击率(CTR)预测的最新研究通过对更长的用户行为序列进行建模,已达到新的水平。除其他外,两阶段的方法是用于工业应用的最先进的解决方案(SOTA)。两阶段方法首先训练检索模型,以事先截断长行为序列,然后使用截短序列训练CTR模型。但是,检索模型和CTR模型是分别训练的。因此,CTR模型中检索到的子序列不准确,它降低了最终性能。在本文中,我们提出了一个端到端范式来建模长行为序列,与现有模型相比,该序列能够实现卓越的性能以及出色的成本效益。我们的贡献是三倍:首先,我们提出了一个名为ETA-NET的基于哈希的有效目标(TA)网络,以基于低成本的位置操作来启用端到端的用户行为检索。提出的ETA-NET可以通过顺序数据建模的数量级来降低标准TA的复杂性。其次,我们建议将通用系统体系结构作为一种可行的解决方案,用于在工业系统上部署ETA-NET。特别是,与SOTA两阶段方法相比,ETA-NET已部署在TAOBAO的推荐系统上,并在CTR上带来了1.8%的升降机和3.1%的升降机(GMV)。第三,我们在离线数据集和在线A/B测试上进行了广泛的实验。结果证明,在CTR预测性能和在线成本效益方面,所提出的模型大大优于现有的CTR模型。 ETA-NET现在为TAOBAO的主要流量提供服务,每天为数亿用户提供服务。
translated by 谷歌翻译
在移动设备上部署机器学习模型已引起越来越多的关注。为了解决设备上硬件资源的局限性解决模型概括问题,设备模型需要通过诸如云模型的模型压缩等技术轻量级。但是,改善设备模型概括的主要障碍是云数据和设备模型数据之间的分布变化,因为设备模型上的数据分布通常会随着时间而变化(例如,用户在建议系统中可能具有不同的偏好)。尽管实时微调和蒸馏方法考虑到了这种情况,但这些方法需要进行设备训练,由于计算能力较低和设备上缺乏实时标记样品,因此实际上是不可行的。在本文中,我们提出了一个名为Metanetwork的新型任务无关框架,用于从云中生成自适应设备模型参数,而无需进行设备训练。具体而言,我们的元网络部署在云上,由元培养剂和转移器模块组成。 Metagenerator旨在学习从样本到模型参数的映射函数,并且可以根据从设备上传到云的样本生成和传递自适应参数到设备。转移剂旨在减少元烯剂的振荡,加速收敛并在训练和推理过程中提高模型性能。我们使用三个数据集评估了两个任务的方法。广泛的实验表明,元网可以以不同的方式实现竞争性能。
translated by 谷歌翻译
近年来,在自学学习(SSL)方面取得了重大成功,这有助于各种下游任务。但是,攻击者可能会窃取此类SSL模型并将其商业化以获利,这对于保护其知识产权(IP)至关重要。大多数现有的IP保护解决方案都是为监督学习模型而设计的,不能直接使用,因为它们要求模型的下游任务和目标标签在水印嵌入过程中已知并获得,这在SSL的域中并非总是可以的。为了解决此类问题,尤其是在水印嵌入过程中下游任务多样化且未知时,我们提出了一种新型的黑盒水印解决方案,名为SSL-WM,以保护SSL模型的所有权。 SSL-WM将水印编码器的水印输入映射到不变的表示空间中,该空间会导致任何下游分类器产生预期的行为,从而允许检测到嵌入式水印。我们使用不同的SSL模型(包括基于对比度和基于生成的生成型)来评估许多任务,例如计算机视觉(CV)和自然语言处理(NLP)等许多任务。实验结果表明,SSL-WM可以有效地验证各种下游任务中被盗SSL模型的所有权。此外,SSL-WM对模型进行微调和修剪攻击非常强大。最后,SSL-WM还可以从评估的水印检测方法中逃避检测,从而证明了其在保护SSL模型IP时的有希望的应用。
translated by 谷歌翻译
交叉路口是自动驾驶任务最具挑战性的场景之一。由于复杂性和随机性,在相交处的基本应用(例如行为建模,运动预测,安全验证等)在很大程度上取决于数据驱动的技术。因此,交叉点中对流量参与者(TPS)的轨迹数据集的需求很大。目前,城市地区的大多数交叉路口都配备了交通信号灯。但是,尚无用于信号交叉点的大规模,高质量,公开可用的轨迹数据集。因此,在本文中,在中国天津选择了典型的两相信号交叉点。此外,管道旨在构建信号交叉数据集(SIND),其中包含7个小时的记录,其中包括13,000多种TPS,具有7种类型。然后,记录了信德的交通违规行为。此外,也将信德与其他类似作品进行比较。 SIND的特征可以概括如下:1)信德提供了更全面的信息,包括交通信号灯状态,运动参数,高清(HD)地图等。2)TPS的类别是多种多样和特征的,其中比例是脆弱的道路使用者(VRU)最高为62.6%3)显示了多次交通信号灯违反非电动车辆的行为。我们认为,Sind将是对现有数据集的有效补充,可以促进有关自动驾驶的相关研究。该数据集可通过以下方式在线获得:https://github.com/sotif-avlab/sind
translated by 谷歌翻译